The generalized well-posedness of the Cauchy problem for an abstract stochastic equation with multiplicative noise
نویسندگان
چکیده
منابع مشابه
Sharp well-posedness of the Cauchy problem for a generalized Ostrovsky equation with positive dispersion
Here u(x, t) represents the free surface of the liquid and the parameter γ > 0 measures the effect of rotation. (1.1) describes the propagation of internal waves of even modes in the ocean; for instance, see the work of Galkin and Stepanyants [1], Leonov [2], and Shrira [3, 4]. The parameter β determines the type of dispersion, more precisely, when β < 0, (1.1) denotes the generalized Ostrovsky...
متن کاملRemarks on the Well-Posedness of the Nonlinear Cauchy Problem
We show that hyperbolicity is a necessary condition for the well posedness of the noncharacteristic Cauchy problem for nonlinear partial differential equations. We give conditions on the initial data which are necessary for the existence of solutions and we analyze Hadamard’s instabilities in Sobolev spaces. We also show that genuinely nonlinear equations raise new interesting problems.
متن کاملWell-posedness and asymptotic behavior for stochastic reaction-diffusion equations with multiplicative Poisson noise∗
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces .
متن کاملWell-posedness and Ergodicity for Stochastic Reaction-diffusion Equations with Multiplicative Poisson Noise
We establish well-posedness in the mild sense for a class of stochastic semilinear evolution equations with a polynomially growing quasi-monotone nonlinearity and multiplicative Poisson noise. We also study existence and uniqueness of invariant measures for the associated semigroup in the Markovian case. A key role is played by a new maximal inequality for stochastic convolutions in Lp spaces.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Steklov Institute of Mathematics
سال: 2013
ISSN: 0081-5438,1531-8605
DOI: 10.1134/s0081543813020119